а) Решите уравнение \(2\log^2_{2}{(2\cos{x})}-9\log_{2}{(2\cos{x})}+4=0\)
б) Найдите все корни этого уравнения, принадлежащие отрезку \(\left[-2\pi;-\dfrac{\pi}{2}\right]\)
Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.
а)
1. 2πn, n∈Z | 2. π/6+2πn, n∈Z | 3. π/4+2πn, n∈Z | 4. π/3+2πn, n∈Z |
5. π/2+2πn, n∈Z | 6. 2π/3+2πn, n∈Z | 7. 3π/4+2πn, n∈Z | 8. 5π/6+2πn, n∈Z |
9. π+2πn, n∈Z | 10. -π/6+2πn, n∈Z | 11. -π/4+2πn, n∈Z | 12. -π/3+2πn, n∈Z |
13. -π/2+2πn, n∈Z | 14. -2π/3+2πn, n∈Z | 15. -3π/4+2πn, n∈Z | 16. -5π/6+2πn, n∈Z |
б)
17. -2π | 18. -11π/6 | 19. -7π/4 | 20. -5π/3 |
21. -3π/2 | 22. -4π/3 | 23. -5π/4 | 24. -7π/6 |
25. -π | 26. -5π/6 | 27. -3π/4 | 28. -2π/3 |
29. -π/2 |