Сайт подготовки к экзаменам Uchus.online

Сборники ЕГЭ профиль

21 вариант ЕГЭ Ященко 2021

21 вариант ЕГЭ Ященко 2021 (сборник 36 вариантов)
Открыть тест отдельно

Железнодорожный билет для взрослого стоит 580 рублей. Стоимость билета для школьника составляет 50% от стоимости билета для взрослого. Группа состоит из 17 школьников и 3 взрослых. Сколько рублей стоят билеты на всю группу?

На диаграмме показана средняя температура воздуха в Казани за каждый месяц 2017 года. По горизонтали указываются месяцы, по вертикали - температура в градусах Цельсия.

картинка

Определите по диаграмме, в каком месяце первого полугодия 2017 года средняя температура за месяц в Казани была наибольшей. Запишите в ответ значение средней температуры в этот месяц в градусах Цельсия.

На клетчатой бумаге изображён круг площадью 60. Найдите площадь закрашенного сектора.

картинка

Перед началом первого тура чемпионата по теннису участников разбивают на игровые пары случайным образом с помощью жребия. Всего в чемпионате участвует 51 спортсмен, среди которых 14 спортсменов из России, в том числе Т.. Найдите вероятность того, что в первом туре Т. будет играть с каким-либо спортсменом из России.

Найдите корень уравнения \(\dfrac{4}{7}x=-4\dfrac{5}{7}\)

Четырёхугольник ABCD вписан в окружность. Угол ABC равен 122°, угол ABD равен 36°. Найдите угол CAD. Ответ дайте в градусах.

На рисунке изображены график функции \(y=f(x)\) и касательная к нему в точке с абсциссой \(x_0\). Найдите значение производной функции \(f(x)\) в точке \(x_0\).

картинка

В правильной четырёхугольной пирамиде SABCD точка О - центр основания, S - вершина, SO=9, SC=15. Найдите длину отрезка BD.

картинка

Найдите значение выражения \((27^4)^3:(9^2)^8 \)

Велосипедист совершает n оборотов педалей велосипеда, а велосипед при этом проходит путь, который можно найти по формуле \(S=2\pi R\dfrac{a_1}{a_2}n\) м, где \(R\) - радиус колеса в метрах, \(a_1\) и \(a_2\) - количество зубцов на большой и малой звёздочках велосипеда соответственно. Какой путь пройдёт велосипед при 13 оборотах педалей, если на большой звёздочке 40 зубьев, на малой - 15, а диаметр колеса 57 см? Считайте, что \(\pi=3{,}14\).Результат округлите до целого числа метров.

Имеется два сосуда. Первый содержит 55 кг, а второй 20 кг растворов кислоты различной концентрации. Если эти растворы смешать, то получится раствор, содержащий 68% кислоты. Если же смешать равные массы этих растворов, то получится раствор, содержащий 75% кислоты. Сколько процентов кислоты содержится в первом сосуде?

Найдите наибольшее значение функции \(y=-\dfrac{4}{3}x\sqrt{x}+6x+13\) на отрезке [4;16]

а) Решите уравнение \(\cos{x}+2\cos{\left(2x-\dfrac{\pi}{3}\right)}=\sqrt{3}\sin{2x}-1\)
​б) Укажите корни этого уравнения, принадлежащие отрезку \(\left[-5\pi;-\dfrac{7\pi}{2}\right]\)

Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.

а)

1. 2πn, n∈Z 2. π/6+2πn, n∈Z 3. π/4+2πn, n∈Z 4. π/3+2πn, n∈Z
5. π/2+2πn, n∈Z 6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. -5π 18. -29π/6 19. -19π/4 20. -14π/3
21. -9π/2 22. -13π/3 23. -17π/4 24. -25π/6
25. -4π 26. -23π/6 27. -15π/4 28. -11π/3
29. -7π/2

Точки A, B и C лежат на окружности основания конуса с вершиной S, причём A и C диаметрально противоположны. Точка M - середина BC.
а) Докажите, что прямая SM образует с плоскостью ABC такой же угол, как и прямая AB с плоскостью SBC.
б) Найдите угол между прямой SA и плоскостью SBC, если AB=6, BC=8 и SC=5√2

Решите неравенство \(4\log^2_{4}{(\sin^3{x})}+8\log_{2}{(\sin{x})}\geqslant1\)

На гипотенузе \(AB\) и катетах \(BC\) и \(AC\) прямоугольного треугольника \(ABC\) отмечены точки \(M\), \(N\) и \(K\) соответственно, причём прямая \(NK\) параллельна прямой \(AB\) и \(BM=BN=\dfrac{1}{2}KN\). Точка \(Р\) - середина отрезка \(KN\).

а) Докажите, что четырёхугольник \(BCPM\) - равнобедренная трапеция.

б) Найдите площадь треугольника \(ABC\), если \(BM=1\) и \(\angle BCM=15°\)

Планируется выдать льготный кредит на целое число миллионов рублей на четыре года. В середине каждого года действия кредита долг заёмщика возрастает на 20% по сравнению с началом года. В конце 1-го и 2-го годов заёмщик выплачивает только проценты по кредиту, оставляя долг неизменно равным первоначальному. В конце 3-го и 4-го годов заёмщик выплачивает одинаковые суммы, погашая весь долг полностью. Найдите наименьший размер кредита, при котором общая сумма выплат заёмщика превысит 8 млн рублей. Ответ дайте в рублях.

Найдите все значения \(a\), при каждом из которых система уравнений \(\begin{cases}(ay-ax+2)(y-x+3a)=0\\|xy|=a\end{cases}\) имеет ровно шесть решений.

Известно, что в кошельке лежало n монет, каждая из которых могла иметь достоинство 2, 5 или 10 рублей. Аня сделала все свои покупки, расплатившись за каждую покупку отдельно без сдачи только этими монетами, потратив при этом все монеты из кошелька.
а) Могли ли все её покупки состоять из блокнота за 56 рублей и ручки за 29 рублей, если n=14?
б) Могли ли все её покупки состоять из чашки чая за 10 рублей, сырка за 15 рублей и пирожка за 20 рублей, если n=19?
в) Какое наименьшее количество пятирублёвых монет могло быть в кошельке, если Аня купила только альбом за 85 рублей и n=24?

Введите ответ в форме строки "да;да;1234". Где ответы на пункты разделены ";", и первые два ответа с маленькой буквы.

Загрузка...