Сайт подготовки к экзаменам Uchus.online

36 вариантов ЕГЭ 2021

12 вариант ЕГЭ Ященко с решением

12 вариант ЕГЭ Ященко 2021 (сборник 36 вариантов)
Открыть тест отдельно

В магазине вся мебель продаётся в разобранном виде. Покупатель может заказать сборку мебели на дому, стоимость которой составляет 10 % от стоимости купленной мебели. Шкаф стоит 2400 рублей. Во сколько рублей обойдётся покупка этого шкафа вместе со сборкой?

На диаграмме приведены данные о численности населения в Вологде на конец каждого года с 2000 года по 2018 год (в тыс. чел.). Определите, на сколько тысяч человек выросла численность населения в Вологде за период с конца 2008 года по конец 2018 года.

картинка

На клетчатой бумаге с размером клетки 1x1 изображён четырёхугольник. Найдите его площадь.

картинка

Всего в группе туристов 51 человек, в том числе Иван и Егор. Группу случайным образом делят на три подгруппы по 17 человек для посадки в три автобуса. Известно, что Иван оказался в третьем автобусе. Какова вероятность того, что при этом условии Егор окажется в первом автобусе?

Найдите корень уравнения \(0{,}2^{5+4x}=125\).

В четырёхугольник ABCD вписана окружность, АВ=8, ВС=5 и CD=27. Найдите четвёртую сторону четырёхугольника.

На рисунке изображён график \(y = f'(x)\) производной функции \(f(x)\), определённой на интервале \((-3; 8)\). В какой точке отрезка \([-2; 3]\) функция \(f(x)\) принимает наименьшее значение?

картинка

Цилиндр и конус имеют общие основание и высоту. Высота цилиндра равна радиусу основания. Площадь боковой поверхности цилиндра равна 27√2. Найдите площадь боковой поверхности конуса.

Найдите значение выражения \(\left(3\dfrac{1}{8}-1{,}5\right):\dfrac{1}{56}\).

В телевизоре ёмкость высоковольтного конденсатора \(C=5\cdot10^{-6}\,Ф\). Параллельно с конденсатором подключён резистор с сопротивлением \(R=6\cdot10^{6}\,Ом\). Во время работы телевизора напряжение на конденсаторе \(U_0=34 кВ\). После выключения телевизора напряжение на конденсаторе убывает до значения \(U \,(кВ)\) за время, определяемое выражением \(t=\alpha RC\log_{2}{\dfrac{U_0}{U}}\) (с), где \(\alpha=1{,}7\) - постоянная. Определите напряжение на конденсаторе, если после выключения телевизора прошла 51 с. Ответ дайте в киловольтах.

Плиточник должен уложить 120 м² плитки. Если он будет укладывать на 8 м² в день больше, чем запланировал, то закончит работу на 4 дня раньше. Сколько квадратных метров плитки в день планирует укладывать плиточник?

Найдите точку максимума функции \(y=x^{3}+18x^{2}+81x+23\).

а) Решите уравнение \(2\sin^2x-3\sqrt3\sin\left(\dfrac{\pi}{2}+x\right)-5=0\)
б) Укажите все корни этого уравнения, принадлежащие отрезку \(\left[-\dfrac{5\pi}{2};-\pi \right] \).

​​Выберите все верные ответы на пункты а) и б). Запишите их номера по возрастанию, через запятую, без пробелов.
а)

1. 2πn, n∈Z 2. π/6+2πn, n∈Z 3. π/4+2πn, n∈Z 4.π/3+2πn, n∈Z
5. π/2+2πn, n∈Z 6. 2π/3+2πn, n∈Z 7. 3π/4+2πn, n∈Z 8. 5π/6+2πn, n∈Z
9. π+2πn, n∈Z 10. -π/6+2πn, n∈Z 11. -π/4+2πn, n∈Z 12. -π/3+2πn, n∈Z
13. -π/2+2πn, n∈Z 14. -2π/3+2πn, n∈Z 15. -3π/4+2πn, n∈Z 16. -5π/6+2πn, n∈Z

б)

17. -5π/2 18. -7π/3 19. -9π/4 20. -13π/6
21. -2π 22. -11π/6 23. -7π/4 24. -5π/3
25. -3π/2 26. -4π/3 27. -5π/4 28. -7π/6
29. -π      

В правильной четырёхугольной пирамиде SABCD сторона основания АВ равна 4, а боковое ребро SA равно 5. На ребре SC отмечена точка K, причём SK:KC = 1:3. Плоскость \(\alpha\) содержит точку K и параллельна плоскости SAD.
а) Докажите, что сечение пирамиды SABCD плоскостью \(\alpha\) — трапеция.
б) Найдите объём пирамиды, вершиной которой является точка S, а основанием — сечение пирамиды SABCD плоскостью \(\alpha\).

Решите неравенство \(\log_{2}{(18-9x)}-\log_{2}{(x+2)}>\log_{2}{(x^2-6x+8)}\)

Точка O — центр вписанной в треугольник ABC окружности. Прямая BO вторично пересекает описанную около этого треугольника окружность в точке E.
а) Докажите, что углы ∠EOC=∠ECO.
б) Найдите площадь треугольника ACE, если радиус описанной около треугольника ABC окружности равен 6√3, ∠ABC=60°.

15 января планируется взять кредит в банке на 49 месяцев. Условия его возврата таковы:
- 1-го числа каждого месяца долг возрастает на 1% по сравнению с концом предыдущего месяца;
- со 2-го по 14-е число каждого месяца необходимо выплатить часть долга;
- 15-го числа каждого месяца долг должен быть на одну и ту же сумму меньше долга на 15-е число предыдущего месяца.
Какую сумму в рублях планируется взять в кредит, если общая сумма выплат после полного его погашения составит 2 млн рублей?
(Считайте, что округления при вычислении платежей не производятся.)

Найдите все значения \(a\), при каждом из которых уравнение \(\dfrac{|x-6|+a-6}{x^2-10x+a^2}=0\) имеет ровно два различных корня.

В ящике лежит 58 овощей, масса каждого из которых выражается целым числом граммов. В ящике есть хотя бы два овоща различной массы, а средняя масса всех овощей равна 1000 г. Средняя масса овощей, масса каждого из которых меньше 1000 г, равна 976 г. Средняя масса овощей, масса каждого из которых больше 1000 г, равна 1036 г.
а) Могло ли в ящике оказаться поровну овощей массой меньше 1000 г и овощей массой больше 1000 г?
б) Могло ли в ящике оказаться ровно 12 овощей, масса каждого из которых равна 1000 г?
в) Какую наименьшую массу может иметь овощ в этом ящике?

Введите ответ в форме строки "да;да;1234". Где ответы на пункты разделены ";", и первые два ответа с маленькой буквы.

Загрузка...