Задачи ЕГЭ профиль
- 1. Планиметрия
- 2. Векторы
- 3. Стереометрия
- 4. Классическое определение вероятности
- 5. Теория вероятностей
- 6. Уравнения
- 7. Нахождение значений выражений
- 8. Производная
- 9. Задачи прикладного содержания
- 10. Текстовые задачи
- 11. Графики функций
- 12. Исследование функций
- 13. Сложные уравнения
- 14. Стереометрия
- 15. Неравенства
- 16. Экономические задачи
- 17. Планиметрия
- 18. Параметры
- 19. Теория чисел
8.1. Геометрический смысл производной (Задачи ЕГЭ профиль)
На рисунке изображен график функции \(y=f(x)\). На оси абсцисс отмечено восемь точек \(x_1, \ldots, x_8\). Сколько среди этих точек таких, производная в которых отрицательна?
На рисунке изображён график функции \(y=f(x)\), определённой на интервале \((-9 ; 5)\). Найдите количество точек, в которых производная функции \(f(x)\) равна 0.
На рисунке изображён график функции \(y=f(x)\), определённой на интервале \((-5; 9)\). Найдите количество точек, в которых производная функции \(f(x)\) равна 0.
На рисунке изображен график функции \(f(x)\), определенной на интервале (-5;5). Найдите количество точек, в которых производная функции \(f(x)\) равна 0.
На рисунке изображен график функции \(f(x)\), определенной на интервале (-5;5). Найдите количество точек, в которых производная функции \(f(x)\) равна 0.
На рисунке изображён график функции \(y=f(x)\), определённой на интервале (-9;5). Найдите количество точек, в которых производная функции \(f(x)\) равна 0.
На рисунке изображён график дифференцируемой функции \(y=f(x)\). На оси абсцисс отмечены девять точек: \(x_{1}, x_{2}, ..., x_{9}\). Найдите все отмеченные точки, в которых производная функции \(f(x)\) отрицательна. В ответе укажите количество этих точек.
На рисунке изображён график функции \(y=f(x)\), определённой на интервале (-2;12). Найдите количество точек, в которых производная функции \(f(x)\) равна 0.
На рисунке изображен график функции \(y = f(x)\) и восемь точек на оси абсцисс: \(x_{1}\), \(x_{2}\), \(x_{3}\), \(x_{4}\), \(x_{5}\), \(x_{6}\), \(x_{7}\), \(x_{8}\). В скольких из этих точек производная функции \(f(x)\) отрицательна?
На рисунке изображён график дифференцируемой функции \(y=f(x)\), определённой на интервале \((-4;5)\). Найдите точку из отрезка \([-2;4]\), в которой производная функции \(f(x)\) равна 0.