Задачи ЕГЭ профиль
- 1. Планиметрия
- 2. Векторы
- 3. Стереометрия
- 4. Классическое определение вероятности
- 5. Теория вероятностей
- 6. Уравнения
- 7. Нахождение значений выражений
- 8. Производная
- 9. Задачи прикладного содержания
- 10. Текстовые задачи
- 11. Графики функций
- 12. Исследование функций
- 13. Сложные уравнения
- 14. Стереометрия
- 15. Неравенства
- 16. Экономические задачи
- 17. Планиметрия
- 18. Параметры
- 19. Теория чисел
Задача №12037
Есть 60 карточек, на каждой из которых написано натуральное число больше 1. Все числа различные. На обратной стороне каждой карточки ставят цветовую отметку: если число делится на 3 – красную, если на 4 – синюю, если на 5 – зелёную. Получилось так, что на каждой карточке поставлено не менее двуч цветовыех отметок.
а) Какое наибольшее количество карточек может быть с числами меньше 200?
б) Получилось, что на k карточках только синяя и зелёная отметки, на k карточках - только синяя и красная, на k карточках - только красная и зелёная. Найдите наименьшее возможное значение наибольшего числа среди чисел, указанных на карточках.
в) Карточек с двумя отметками, одна из которых синяя, получилось 37. Найдите наименьшее возможное значение наибольшего числа среди указанных на карточках.
Введите ответ в форме строки "21;43;7", где ответы на пункты разделены ";"